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Deterministic Optimization Model

Ø Variables

Ø Constraints

Ø Objective

Ø Parameters

Ø The input parameters 𝜃 can be uncertain. 

g, h

f

the capacity of a process (𝑥), whether to install a process or not (𝑦)

the mass balance, to satisfy the customer demand

minimize total cost

Ø Model decision-making process as an optimization problem

continuous 𝑥, discrete 𝑦

min f(x, y, ✓)

s.t. g(x, y, ✓)  0

h(x, y, ✓) = 0

x 2 X, y 2 Y

✓Product demand, unit cost, thermal and kinetic properties
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Sources of Parameter Uncertainty

Ø Long-term forecasts, e.g., natural gas price

Ø Short-term changing conditions, e.g., extreme weather

Ø Real-time inaccurate measurement, e.g., temperature, pressure
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How Do We Model Uncertainty in Optimization Problems?

Ø Not a uniquely-defined problem

q Multiple ways to hedge against uncertainty

The jungle of stochastic optimization
(credit: Warren Powell)



7

0

0.2

0.4

0.6

0.8 1 1.2

Stochastic Programming

Ø Stochastic programming is a framework for modeling optimization problems 
that involve uncertainty (Birge and Louveaux, 2011)

Ø Uncertainty can be characterized by probability distributions known a priori
§ Continuous distributions

Ø Each realization of uncertainty parameters is called a scenario
Ø Optimize the expected value of the objective over all possible scenarios, i.e.,

a risk-neutral approach
Ø Common framework: Two stage stochastic programming
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Ø Superstructure

Ø First stage decisions: which process to install, the capacity of each process

Ø Second stage decisions: the mass flow rate of each stream

Ø Constraints: satisfy customer demands, mass balance

A Motivating Example

Process 1

Process 2

Process 3
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Two Stage Stochastic Programming

t = 1 t = 2

Decision Resolution of 
uncertainty

Recourse action

Ø First stage decisions: Here and now

Ø Second stage decisions: Wait and see, Recourse decisions
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Ø Superstructure

Ø First stage decisions

Investment Planning of Process Networks

Process 1

Process 2

Process 3

Chemical 1

Chemical 3 (Product)

40 ton/day

50 ton/day
10 ton/day

50 ton/day40 ton/day

50 ton/day

Ø Second stage decisions High demandlow demand

40 ton/day

40 ton/day40 ton/day

Chemical 2

Source of Uncertainty
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Ø Motivation: Process units may fail

Ø Solution: Have backup units to improve reliability

Ø Trade-off: Investment cost v.s. system reliability 

Extension to Process Reliability
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COMP1

COMP2 COMP3
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COMP5 COMP6

Feed1 (cheap)

Feed2 (exp.)

V

Reactor1

Reactor2

HEC1

HEC2

HEC3

HEC4

HEH1

HEH2

HEH3

Product

Byproduct

Low conv, low cost

High conv, high cost

Superstructure

Key optimization variables in the reactors:
operating pressure and the conversion per pass

Industrial Methanol Synthesis
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Industrial Methanol Synthesis

1
Feed1 (cheap)

V

Reactor1HEC2

HEC3

HEH2

HEH3

Product

Byproduct

Low conv, low cost

Deterministic Model Profit = 4115.3749 ($1000 PER YEAR)
Too optimistic

3.943

P=2.50 MPa
T=422 K

Conversion of key component=31.2%
Reactor Volume=42.765𝒎𝟑

COMP4

COMP2 COMP3
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Industrial Methanol Synthesis

1

COMP1

COMP4

Feed1 (cheap)

V

Reactor1HEC2

HEC3

HEH2

HEH3

Product

Byproduct

Low conv, low cost

Stochastic Programming Model Expected Profit = 3203.6879 ($1000 
PER YEAR)

Consider demand uncertainty and reliability Simultaneously

Reactor Volume=65.255 𝒎𝟑

3.844

Value of Reliable solution: 5.6% of the expected profit
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Sensor Placement under Uncertainty

Ø Motivation: Determine the optimal configurations of sensors to maximize 
the probability of detecting safety hazards

Ø Flame, smoke, and heat detectors using chemical or optical sensors

Work of Prof. Carl Laird with P2SAC

Obstructions

Optical 
sensor
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Sensor Placement under Uncertainty

Ø Facility with 81 candidate flame detector locations (Kenexis Consulting 
Corporation)

T. Zhen, K.A. Klise, S. Cunningham et al. / Process Safety and 
Environmental Protection 132 (2019) 47–58
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Mathematical Optimization for Sensor Placement

Ø Mixed-integer nonlinear programming (MINLP) formulation

Binary variable, whether to 
place a sensor at location 𝑙

expected coverage of entity

Place at most 𝑘 sensors

Maximize expected coverage
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Sensor Placement under Uncertainty

Ø Facility with 81 candidate flame detector locations (Kenexis Consulting 
Corporation)

Ø Find the optimal configuration within 2 hours with a tailored algorithm

T. Zhen, K.A. Klise, S. Cunningham et al. / Process Safety and 
Environmental Protection 132 (2019) 47–58



Machine Learning for
Process Monitoring
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Tennessee Eastman process

Ø From measured state variables, perform fault detection 



21

Example: Change in A/C Feed ratio

Step 
change

Control algorithm brings down 
stream A
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Classical Machine Learning Algorithm

Ø Principal component analysis: identify the principal components where the 
data have the largest variance. The non-principal components are “noise”.

Ø Approach: singular value decomposition

Ø Pros: Interpretability

Ø Cons: Low accuracy for nonlinear processes.
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Deep learning methods

Ø Recurrent neural network

Ø Pros: capable of handling nonlinearity and a high degree of spatio-temporal 
correlation

Ø Cons: hard to interpret

𝑠):state

𝑥): input

𝑦): output
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Explainable machine learning

Ø Ongoing research by PhD student Hao Chen

Machine learning-based models

Physics-based models

Computationally efficient to use online
Hard to interpret

High fidelity but expensive to solve
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