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Mathematical Programming
under Uncertainty



Deterministic Optimization Model =

» Model decision-making process as an optimization problem

min  f(x,y,0)
st. g(x,y,0) <0
h(x,y,0) =0
reX,yeyY

» Variables tuantameaasygUispretess (x), whether to install a process or not (y)
» Constraints thé&mass balance, to satisfy the customer demand

» Objective pinimize total cost

» Parameters Product demand, unit cost, thermal and kinetic properties

» The input parameters 6 can be uncertain.



Sources of Parameter Uncertainty

» Long-term forecasts, e.g., natural gas price

Henry Hub Daily Natural Gas Price in 2020

Jan 01,2020 Mar 31,2020 Jun 29,2020 Sep 27,2020 Dec 26,2020

» Short-term changing conditions, e.g., extreme weather




How Do We Model Uncertainty in Optimization Problems?

» Not a uniquely-defined problem
d Multiple ways to hedge against uncertainty

AN,

AR (IR Tl
s iy 10881(
Introduction 1mn AnalYSIS S | Approximate Dynamic
to Stochastic A 4 Programming
Programming B e G o 1

]
Warren 8. Powe

& Dynamic Programming

Model Predictive @ and Optimal Control
il

Control . —
“h R °
Y| - °
o

Reinforcement
Learning

r 4
® _. INTRODUCTION 10
) 4 STOCHASTIC SEARCH
© a0 OPTIMIZATION

‘ ['4 =
| CONTROL® -~
T //\ 5

NY

Online Computation STOCHASTIC
Markov Decision Processes COmDEIili‘:/'s Analysis S]MULATION
Discrete Stochastic Alan Borodin  Ran EX-Yanly OPTIMIZATION

Dynamic Programming An Optima| Computing Budget Allocation

?‘Kx Chun-Hung Chen * Loo Hay Lee

MARTIN L. PUTERMAN R . =
.
N J e .

The jungle of stochastic optimization
(credit: Warren Powell) 6




Stochastic Programming

» Stochastic programming is a framework for modeling optimization problems
that involve uncertainty (Birge and Louveaux, 2011)

» Uncertainty can be characterized by probability distributions known a priori
= Continuous distributions ‘ Discrete distributions
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» Eachrealization of uncertainty parameters is called a scenario

» Optimize the expected value of the objective over all possible scenarios, i.e.,
a risk-neutral approach

» Common framework: Two stage stochastic programming 7



A Motivating Example =

»> Superstructure

>| Process 2 |—
Chemicala I l _l_,
>| Process 1 I _
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» First stage decisions: which process to install, the capacity of each process

Probability

o
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» Second stage decisions: the mass flow rate of each stream

» Constraints: satisfy customer demands, mass balance



Two Stage Stochastic Programming

> First stage decisions: Here and now

» Second stage decisions: Wait and see, Recourse decisions
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Investment Planning of Process Networks 7=
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Extension to Process Reliability =

» Motivation: Process units may fail
» Solution: Have backup units to improve reliability

» Trade-off: Investment cost v.s. system reliability
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Industrial Methanol Synthesis
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Superstructure
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Industrial Methanol Synthesis

27

Deterministic Model

Too optimistic

3.943
Feed1l (cheap)

@

A 4
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Profit = 4115.3749 ($1000 PER YEAR)

A
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P=2.50 MPa

T=422 K

1 Conversion of key component=31.2% :
! Reactor Volume=42.765m3

¢ Product

HEH2
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Industrial Methanol Synthesis =

Stochastic Programming Model Expected Profit = 3203.6879 ($1000
PER YEAR)

Consider demand uncertainty and reliability Simultaneously
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Sensor Placement under Uncertainty 72D

» Motivation: Determine the optimal configurations of sensors to maximize
the probability of detecting safety hazards

» Flame, smoke, and heat detectors using chemical or optical sensors

/

Obstructions
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Work of Prof. Carl Laird with P2SAC



Sensor Placement under Uncertainty 72D

» Facility with 81 candidate flame detector locations (Kenexis Consulting
Corporation)

T. Zhen, K.A.Klise, S. Cunningham et al. / Process Safety and
Environmental Protection 132 (2019) 47-58 16



Mathematical Optimization for Sensor Placement @

» Mixed-integer nonlinear programming (MINLP) formulation

Maximize expected coverage

subjectto Zx, <k

/ leL

Place at most k sensors
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Binary variable, whether to
place a sensor at location [

expected coverage of entity
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Sensor Placement under Uncertainty 72D

» Facility with 81 candidate flame detector locations (Kenexis Consulting
Corporation)

» Find the optimal configuration within 2 hours with a tailored algorithm

T. Zhen, K.A.Klise, S. Cunningham et al. / Process Safety and
Environmental Protection 132 (2019) 47-58 18



Machine Learning for
Process Monitoring

'

Fault Yes | Fault Fault Process
Detection Identification Classification Recovery

f




Tennessee Eastman process =

» From measured state variables, perform fault detection
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Example: Change in A/C Feed ratio

Fault 0: Normal operating condition
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Classical Machine Learning Algorithm ~ 7=D

» Principal component analysis: identify the principal components where the
data have the largest variance. The non-principal components are “noise”.

» Approach: singular value decomposition
» Pros: Interpretability

» Cons: Low accuracy for nonlinear processes.
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Deep learning methods
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> Recurrent neural network

» Pros: capable of handling nonlinearity and a high degree of spatio-temporal

correlation

» Cons: hard to interpret

Unfold

S¢:state
X¢: input

Y;: output

St = fs(X¢, St_1]05)

j’t = Wyst = by
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Explainable machine learning =

» Ongoing research by PhD student Hao Chen

Machine learning-based models

- \ ~ N\ 0 a
A A A
Yia Vi Yin

L J \ 7 \ 7

Computationally efficient to use online
Hard to interpret

Unfold () () )
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Physics-based models

dc  Fo(co—c¢)

_ kB High fidelity but expensive to solve
it = mrth | KoeXP ( RT) c

AT Fo(To—-T) —-AH ( E ) 2U

- _ = T, — T
dt mrih pCy Koexp(~gr)ct ”rpCp( e~ 1)
dh  Fy—F

dt 7T1"2 24
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