

Systems Engineering and Process Safety

Can Li (Tsan) Assistant Professor (Joined 2022) Davidson School of Chemical Engineering

Research Group

Fundamental Research	Applications	People and projects
Mathematical Optimization under Uncertainty	Energy systems optimization, chemical process design and operation, supply chain	Asha: Distributed manufacturing of the electrified processes Kaiyu: Integrated scheduling and control Casper: Electrification of Process Heating (co-advised with Dr. Cornelius Masuku)
Machine Learning	Fault detection, speech/image recognition, computational biology, Acceleration of optimization algorithms	Chi: end-to-end learning of optimization problems Hao: Explainable ML for fault detection Yen-Chun: ML for stem cell (co- advised with Dr. Xiaoping Bao)

Mathematical Programming under Uncertainty

Model decision-making process as an optimization problem

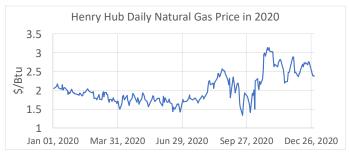
$$\min f(x, y, \theta)$$
s.t.
$$g(x, y, \theta) \le 0$$

$$h(x, y, \theta) = 0$$

$$x \in X, y \in Y$$

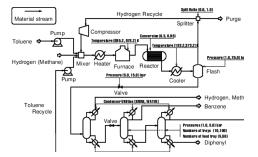
- > Variables then time with xofd is protegors (x), whether to install a process or not (y)
- > Constraints the mass balance, to satisfy the customer demand
- Objective *f*minimize total cost
- > Parameters *P*roduct demand, unit cost, thermal and kinetic properties
- > The input parameters θ can be uncertain.

Long-term forecasts, e.g., natural gas price

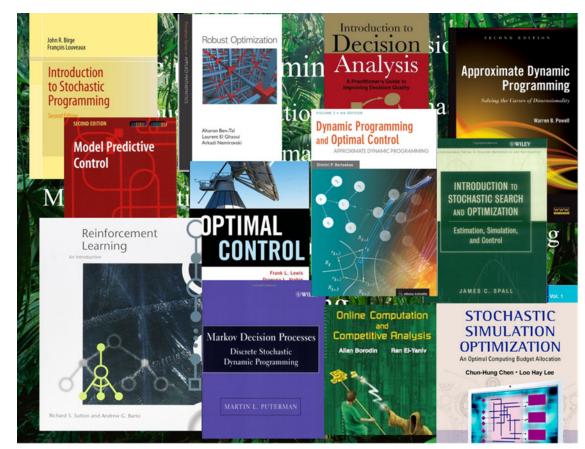


Short-term changing conditions, e.g., extreme weather

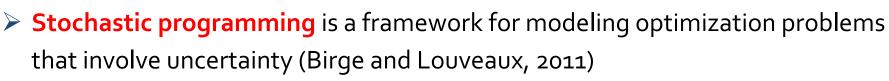
Real-time inaccurate measurement, e.g., temperature, pressure



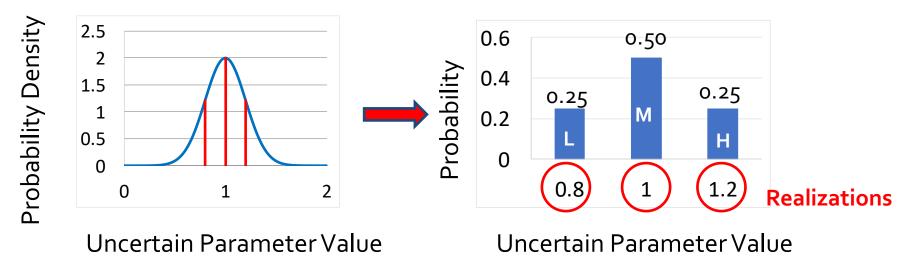
- Not a uniquely-defined problem
 - Multiple ways to hedge against uncertainty



The jungle of stochastic optimization (credit: Warren Powell)



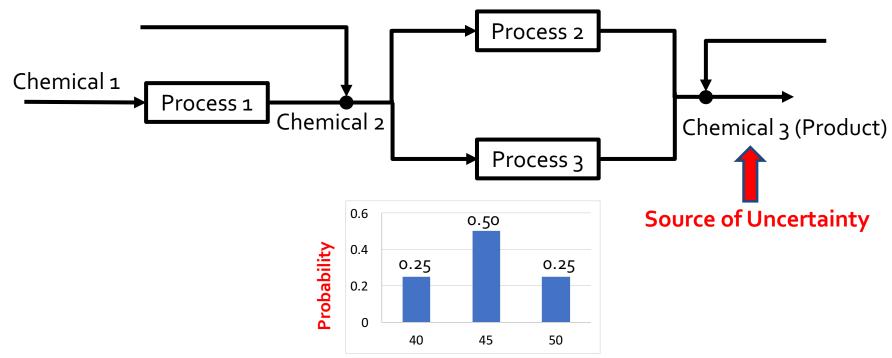
- > Uncertainty can be characterized by **probability distributions** known *α priori*
 - Continuous distributions
 Discrete distributions



- Each realization of uncertainty parameters is called a scenario
- Optimize the expected value of the objective over all possible scenarios, i.e., a risk-neutral approach
- Common framework: Two stage stochastic programming

A Motivating Example

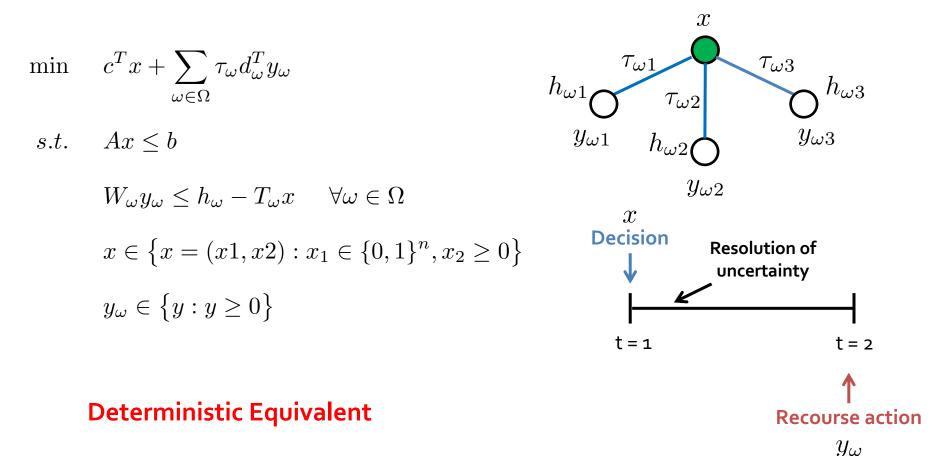
Superstructure



Demand of Chemical 3 (ton/day)

- First stage decisions: which process to install, the capacity of each process
- Second stage decisions: the mass flow rate of each stream
- Constraints: satisfy customer demands, mass balance

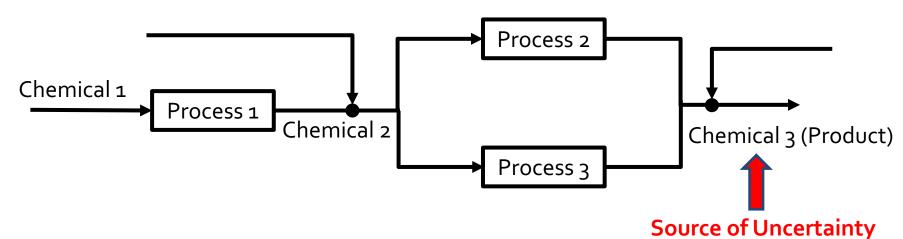
Second stage decisions: Wait and see, Recourse decisions



9

Investment Planning of Process Networks

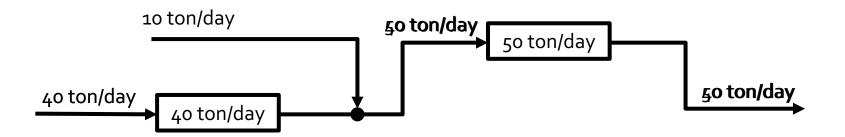
Superstructure



First stage decisions

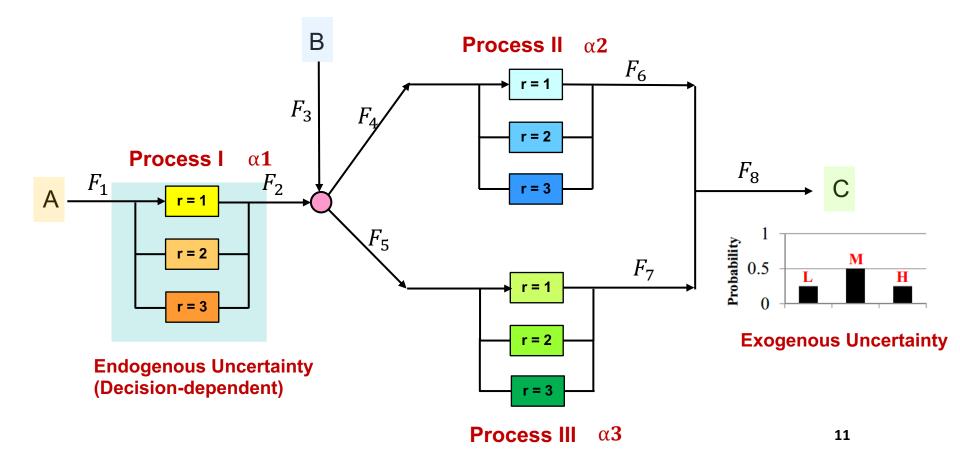
Second stage decisions

Highdamand

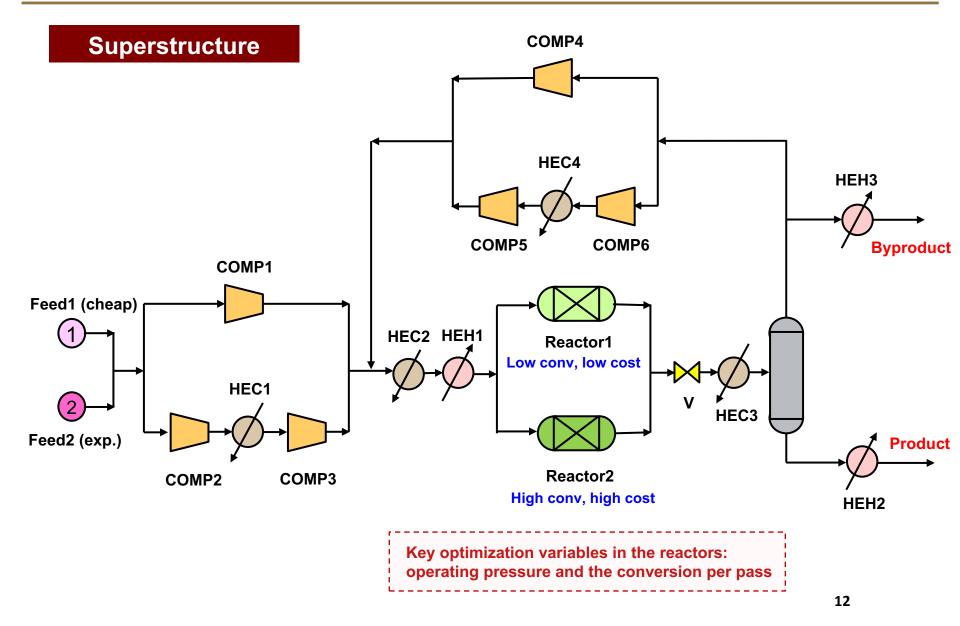


Extension to Process Reliability

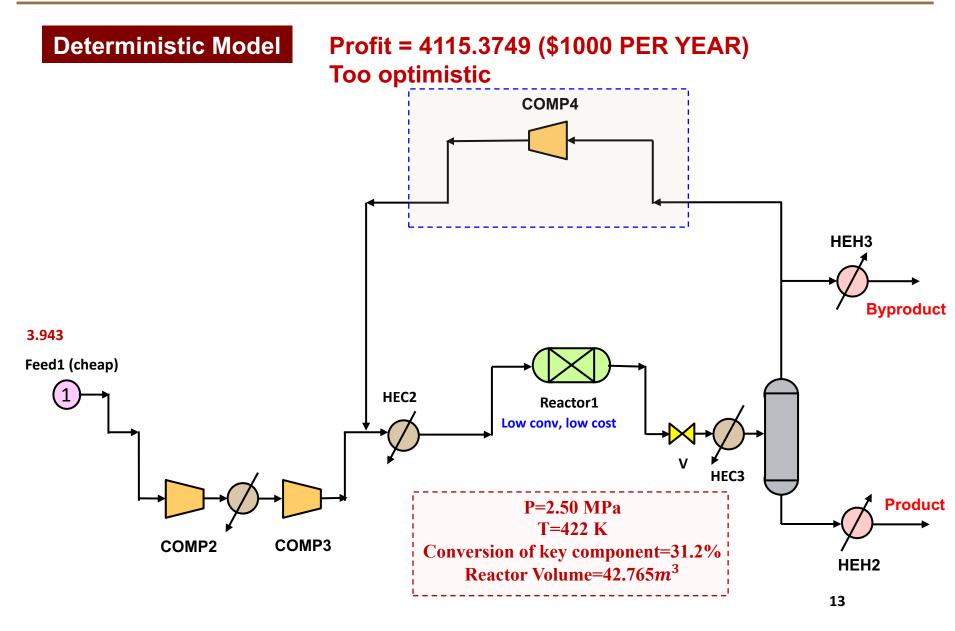
- Motivation: Process units may fail
- > Solution: Have backup units to improve reliability
- > Trade-off: Investment cost v.s. system reliability



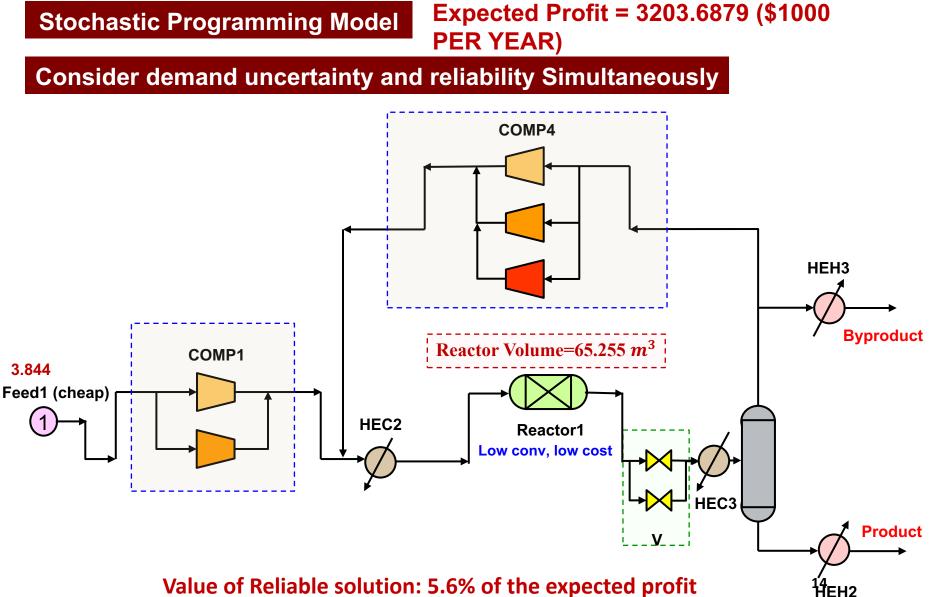
Industrial Methanol Synthesis



Industrial Methanol Synthesis



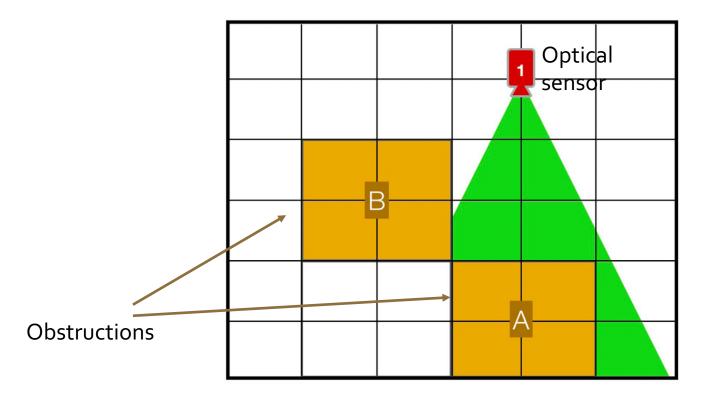
Industrial Methanol Synthesis



Value of Reliable solution: 5.6% of the expected profit

Sensor Placement under Uncertainty

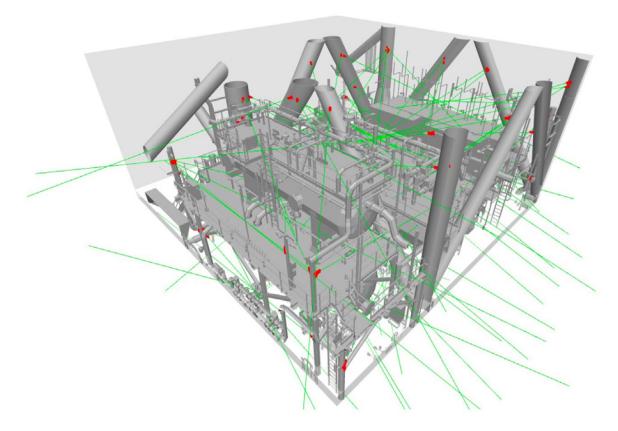
- Motivation: Determine the optimal configurations of sensors to maximize the probability of detecting safety hazards
- > Flame, smoke, and heat detectors using chemical or optical sensors



Work of Prof. Carl Laird with P2SAC

Sensor Placement under Uncertainty

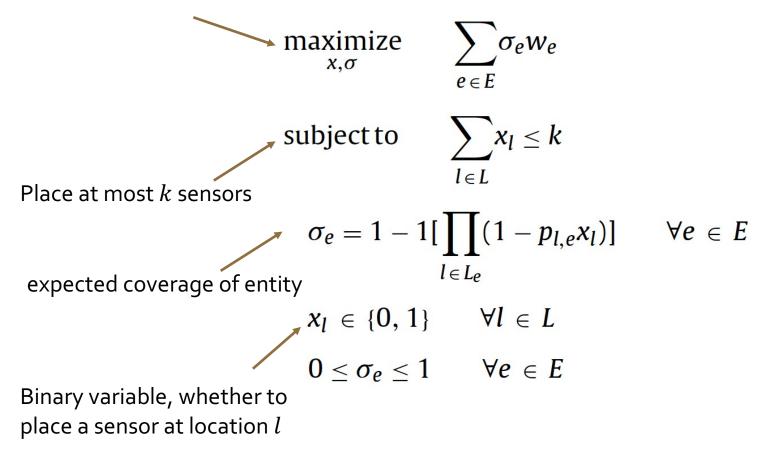
Facility with 81 candidate flame detector locations (Kenexis Consulting Corporation)



T. Zhen, K.A. Klise, S. Cunningham et al. / Process Safety and Environmental Protection 132 (2019) 47–58

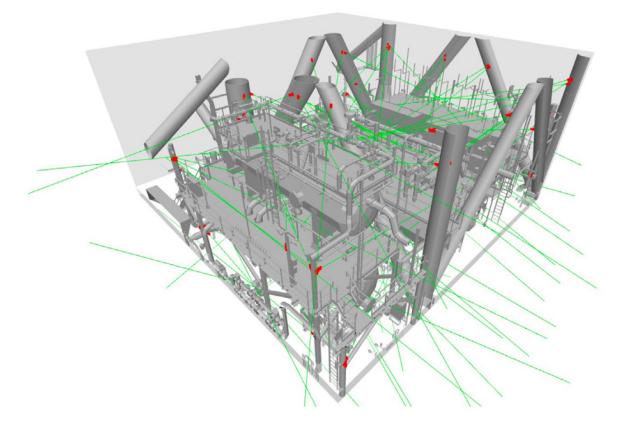
Mixed-integer nonlinear programming (MINLP) formulation

Maximize expected coverage



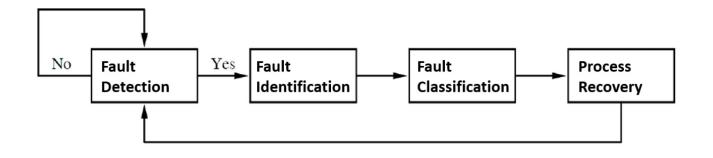
Sensor Placement under Uncertainty

- Facility with 81 candidate flame detector locations (Kenexis Consulting Corporation)
- > Find the optimal configuration within 2 hours with a tailored algorithm



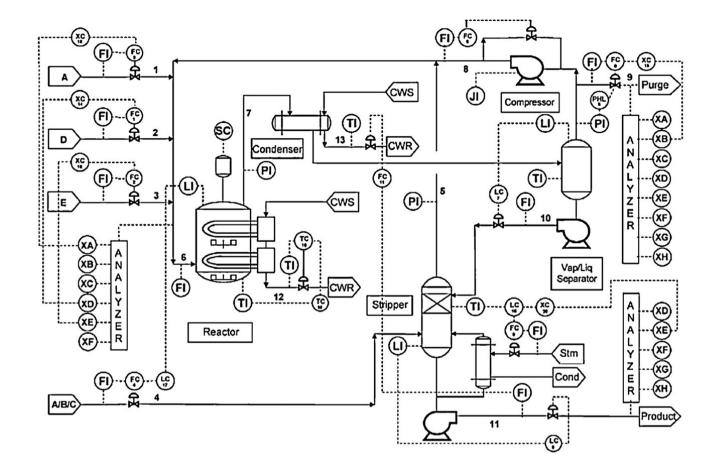
T. Zhen, K.A. Klise, S. Cunningham et al. / Process Safety and Environmental Protection 132 (2019) 47–58

Machine Learning for Process Monitoring

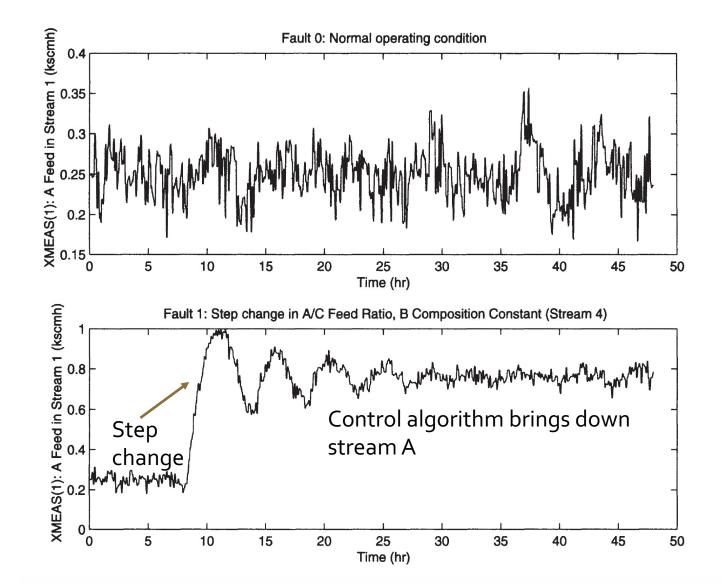


Tennessee Eastman process

From measured state variables, perform fault detection

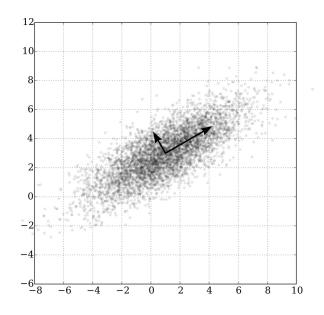


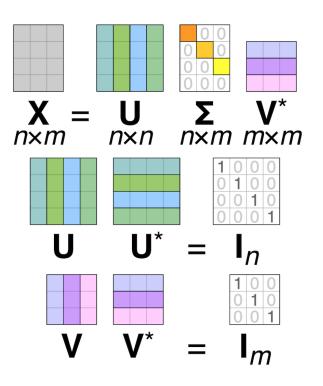
Example: Change in A/C Feed ratio



Classical Machine Learning Algorithm

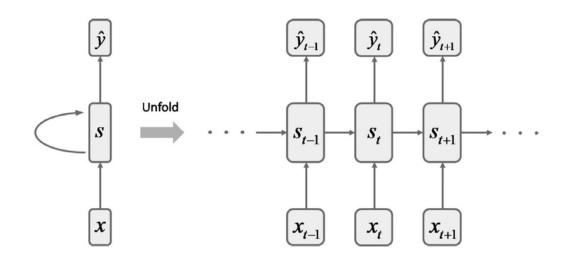
- Principal component analysis: identify the principal components where the data have the largest variance. The non-principal components are "noise".
- > Approach: singular value decomposition
- Pros: Interpretability
- > Cons: Low accuracy for nonlinear processes.





Deep learning methods

- Recurrent neural network
- Pros: capable of handling nonlinearity and a high degree of spatio-temporal correlation
- Cons: hard to interpret



s_t:state

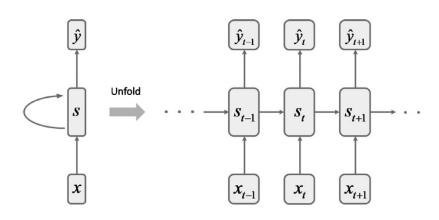
x_t: input

$$\begin{aligned} \mathbf{s}_t &= f_s(\mathbf{x}_t, \mathbf{s}_{t-1} | \theta_s) \\ \hat{\mathbf{y}}_t &= \mathbf{W}_y \mathbf{s}_t + \mathbf{b}_y \end{aligned}$$

 y_t : output

> Ongoing research by PhD student Hao Chen

Machine learning-based models



Computationally efficient to use online Hard to interpret

Physics-based models

$$\frac{dc}{dt} = \frac{F_0(c_0 - c)}{\pi r^2 h} - k_0 \exp\left(-\frac{E}{RT}\right)c \qquad \text{High fidelity but expensive to solve}$$

$$\frac{dT}{dt} = \frac{F_0(T_0 - T)}{\pi r^2 h} + \frac{-\Delta H}{\rho C_p} k_0 \exp\left(-\frac{E}{RT}\right)c + \frac{2U}{r\rho C_p}(T_c - T)$$

$$\frac{dh}{dt} = \frac{F_0 - F}{\pi r^2}$$
24

Research Group

Fundamental Research	Applications	People and projects
Mathematical Optimization under Uncertainty	Energy systems optimization, chemical process design and operation, supply chain	Asha: Distributed manufacturing of the electrified processes Kaiyu: Integrated scheduling and control Casper: Electrification of Process Heating (co-advised with Dr. Cornelius Masuku)
Machine Learning	Fault detection, speech/image recognition, computational biology, Acceleration of optimization algorithms	Chi: end-to-end learning of optimization problems Hao: Explainable ML for fault detection Yen-Chun: ML for stem cell (co- advised with Dr. Xiaoping Bao)